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The Environment.al Acoustic Research Group at. the Naval

ik —

Post.graduate School is engaged in research to establish beneficial

and detrimental environmental effects important. to present. and
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s
A

future Navy acoustic systems.

Pursuant. to the above objectives, environmental and
acoustic models are used to interpret and/predict the complex
results obtained when actual experimental or operational scenarios
are utilized. Acoustic parabolic wave-equat.ion models are useful
for long-range environmental acoustical studies. However the
basic assumptions and certain errors in the use of these models
are not. always obvious. For this reason the present work was
initiated to provide a tutorial introduction mainly for use of
students in the Environmental Acoustic Research Group at. the Naval
Post.graduate School and others interested in obtaining an initial
orientation in this field of research.

Present.ly five professors from the Departments of

Oceanography and Physics are involved in this research as well as

approximately ten graduate students.
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‘ 1. The Parabolic Wave Equation
I A. Introduction |}
g N Historically, the (Leontovich-Fock) parabolic-eguation b
: 4
H approximation was developed for dealing with electromagnetic ]
i ' propagation; see, for example, Fock (1965). This approximati-n to i
i the elliptical wave equation made its way into the area of f
acoustic propagation through the work of ifardin and Tarpert '
-
-
(1973), who applied the split-step Fourier transform method for )

its evaluation.
Since its introduction, the rarabolic ecuation has heen
subjected to substantial analysis in the acoustics community, and

a veriety of alternative nethods for solving the equation have

WA 3TV PEEBRASSN e Tedw S cuNEE s F T "

been developed. It is the purpose of this report to present a
fundamental introduction to the rarabolic-equation apyroximatinn

with some discussion of the more viable methods of numerical

P R e BN RS e Y

solution. Some of the advantages and disadvantages of these

methods will be noted, but detailed discussion of the problems and

0 e

requirements in implementing these methods ac computer algorithms

s 1o
oo

will not be treated; these lie beyond the simple introduction

attempted herein.

.. ,
SIS &

For an overview of these and other methuds cf solving the
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wave equation and its various approximate forms, a good starting

point is DeSanto (1979), and in particular the articles contained

L

‘e " .
‘e 3
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therein by DeSanto, and DiNapoli and Deavenport.
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B. Derivation 3
.
If an acoustic pressure field of constant angular frequency i

td = 27Tf is assumed, then the source-free linear acoustic wave

eéquation

= < (Fpde?)

where the speed of sound ¢ is a function of space reduces to the

o e Al ARSI TV ST T T T T .

: . Helmholtz equat.ion (often termed the "time independent." wave

equation). For the spatial factor S of the pressure

P = S(space) exp(-iwt) i P
i this becomes
: 7% + k¥ =0
S where 1.2b
. k = w/c(space) 1.2c
l If we now assume cylindrical symmetry and adopt cylindrical
; coordinates (r,z) where z represents depth and r is the horizontal

distance from the z-axis, (1.2) becomes

32§/br2 + r-ﬂ9§/aa + azg/ézz + k2§ =0

LT AT N T R

It is useful to define k in terms of an arbitrary constant. value

el VIR Be 4

ko and the index of refraction

2 n = cq/clr,z) where w /kgo=cq e
H so that

: 2 = a2 15
P
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3 Let us now write the solution for S in the form

: _ g

I S = H 7 (k,r) f(r,2) L.6
3 which when substituted into (1.3) results in the equation

i r (1)

- 22£/8r% + 0%£/02% 4|1+ 2 Tl P df + (kz'kg)f =
l - = by H(lT?k r) dr s

b g o o

; 1.7
i If we now restrict attention to ranges r such that

; _

? kor >> 1 and Hél)(kor):u V2/ (nkgr) expli(k,r-m/4] 1.8
2

=2

! then [ ] simplifies to 2iky and (1.7) becomes well-approximated by
: I 5t OE 2

3 — + —5 + 2ik_ — + (Kk)E=0 1.9
o oz or ©dr

The pivotal assumption that f varies slowly with respect to range,

AN AT R OORTRY

' 32§j9r1| << lzkobﬁ/ar

bt RMAL

1.10

- results in the "parabolic (wave) equation"

i :
5 32£/022 + 2iko(E/0r) + (k%-kDrf = 0 1.11 :
p ~ 4
»N ”
! ’ The assumption (1.10) has some extremely important implications: 1
: k|
| (a) The Helmholtz equation, an elliptic equation, has been |
- » .‘
y reduced to a parabolic equation. This means that. the entire ;
iy

! acoustic field need not be solved for all relevant ranges and 5
- 8
§
g :
4 .|
N 3 "
f b

. - L TR — . T e . 5 : s
3 . 5 _-‘..-_-'u_\~'~.-'.‘_‘_-..-.‘\‘ ~‘-'.-',_'~.-, ROy s - ~

- . . . - - » » = L’ 3 . e - . - - g

o WA P P PN b %y DL T LS Bl e e S A N L S R R it it TSP IPEL PR BN S SR |




P r—— ey Y

e T S g e ¥ 0 S M i ek R |
Ut S v o P, o2 LS v e - a

«" e
o el s

b

."l’<

Ze —
7 RO

Py

depths "simultaneously" subject. to boundary conditions on a

surface surrounding the volume of interest. Instead, for an

! outwardly progressing wave, an initial boundary condition can he
established for some small r and then solutions for larger r's

£ obtained by increasing r incrementally. This offers the
possibility of a substantial saving of computer time and memory.
However, the boundary condition (initial condition) assumed for
the first range must be carefully selected. This will be

! discussed later.

2] (b) The parabolic approximation is equivalent to

v .
eal e

>
alains

neglecting any back-scattering, since the solution at some range

r

ry is the source for the solution at some larger range r; and

is independent. of any intervening changes in the speed of sound,
depth of the water column, etc: As the solution is stepped out,
changes at larger r can have no effect. on the fields previously

ohtained ror smaller r.

0 K] .‘._.-g"-'.-‘
‘I‘.‘- e endie @

(c) The parabolic assumption can introduce unavoidable

errors in the details of the resultant. acoustic field. We shall

r
.
oo Y

demonstrate this by considering a particularly simple acoustic

ol
Y
e s

3 model which can be solved by both the Helmholt.z and parabolic
! equations. Comparison of the respective solutions will aid in
i revealing some of the inherent errors resulting from the

parabolic-equation approximation.

h ST
8

For use later, notice that for large kor (1.6) becomes

T P
! DN Y Y

s = V2/(Txgr) £(r,z) expli(kor-1/4)] 1.12a

5% 434
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and that. the acoustic pressure in the parabolic-equation

approximation has the form
P = A V2/(rkyr) f(r,z) expli(kor-7/4)] exp(-iut) 1.12b
with A an arbitrary constant and f(r,z) the solution of (1.11).

Recall this is wvalid for kor >> 1.

C. The Range-Independent Case

Let us assume that the speed of sound is a function only of
depth and that any relevant boundaries are¢ also range independent.
Direct solution of the Helmholtz equation (1.2) results in the

well~-known summat.ion of normal modes
= exp tiwt) X Az (z) BV (x 1) 1.13a
Em ™ —m m o m *

where the constants A, are determined by the properties of the
Z, and source depth, and the depth-dependent functions Z, are

solutions of the equation

2- L
av'z. .
m +[k2(z) -kz] zZ =0
2 m m
daz

1.13b

The eigenfunctions 2, and the eigenvalues k, are established
by the function k(z), the boundary conditions at the top and
bottom of the water column, and the properties of any ocean bottom
(if important). In the limit of large r each normal mode has

asymptotic hehavior

gm-exp(-1ut)gmzm(z) V2/(nkmr)exp[ i(kmr- r%)] 1.14
5
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Solution of the same problem for the parabolic wave equat.ion

proceeds analogously: Let

gm = Bm(r)zm(z) 1.15

Substitute into (1.11) and perform the usual separation of

variables. The result is the pair of equations

2 2 2 2 _
d Zm/dz + [k (Z)-km]Zm =0 i 1ea
and
. 2 3
2ik _(dR /dr) + (k°-k7)R_ =0 1.16b
(o] —m m O —m

Note that (1.16a) and (l1.13b) are identical.

Equation (1.16b) can be solved by direct. integration to

yield
krzn_kcz) \
5“ = exp i —————r ; 150 7
2ko .

Collection of terms reveals the parabolic-equation solution

2 2
' = w) 3 Az (2) BY (k1) e )
P’ = exp(-iwt) An 2 A 5 exp
m 2k
(o]
3.18
In the limit of large r, each term has asymptotic form
)
) & il ]
5 , s = Tp \ E ,
.EI;‘I — expHat) Zi‘m Zm(z)[ﬂ(kor)} ] 1( Zko /4>‘; 1.19
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From (1.14), we see that. the phase speed Cp ©f the m—th normal
mode is

Cp = W/k 1.20

whereas from (1.19), the equivalent term solving the parabolic
approximation is
c! = w2k / (k2 + k) RO
m o m o
Were the acoustic field to oconsist of only a single mode,
m = M, then the choice k, = ky would exactly eliminate the
phase speed error, and the solution of the parabolic equation
would be identiical with that. of the Helmholtz equation.
Unfortunately, this is not usually the case. However, since Ko
is an arbitrary constant., it. is clear that. if the acoustic field
is composed of a set of normal modes whose values of k, all lie
very close together (a "narrow band" of modes), all other modes

being negligibly small or absent, then the choice ko = <k, >

.
i
4
3

# g

where the average <> is taken over just this narrow band will tend

to minimize phase errors. Even here, however, the errors may not

D
ok s
Sy l._l.:‘l

be trivial.

First, we see that except for the special case k, = ky
the phase speed Cm for the normal mode is different from the
analogous phase speed c, for the equivalent. term in the
parabolic solution. This means that. the spatial pattern of the
phase-coherent combination of the pressure terms will be
distorted. There is an additional and equally important. effect

resulting from the fact that the phase speeds for individual modes

.
. . .
o S s ; e 2t sllal et Sl ot soaad L R
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do not change proportionately with those for the equivalent terms

in the parabolic equation. Differentiation of Cp With respect.

P to kp vields

e o
e

|
2 Ac_/rk_ = - w/k® = - ¢ /k .
Eg-.: m m °m €’ *m 1.22
il whereas the same operation applied to cp results in
.; {
l

2, _
o) = cm/ko 1.23

= R
el 0
alasaaen

o 4
] =N '
Acm/Akm cm2km/(km + k

et

A LAl

Thus, the analogous phase speeds are not related simply by a {

o ¥

.
)
Alaiaan

constant.,, which would merely "stretch" or "shrink" the entire '

. o
-4

interference pattern with respect to range. Instead, the detailed
interference pattern of the acoustic field will also be changed.
For a clear example of these effects, see Fig. 5 of McDaniel
(1975-1).

An estimate of the maximum range for which the parabolic

equation retains sufficient accuracy can be obtained following the
development. of Fitzgerald (1975):
Assume that the acoustic field is made up primarily of a set
of strong modes with indices m lying between m(max) and m(min).
This could correspond to a field consisting of trapped modes in a
mixed layer, a shallow-water channel with a fast bottom, or the
deep sound channel.
To minimize error, set .
ko = <kp>
or, almost equivalently,

)
co = <cm>
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ﬂi since either will be about half way between the values found for
i m(max) and m(min). Define

- S

5-:::‘?! :

0. Ac'ylc! - o —~

5] , m(max) col o }cm(mln) co, 1.24a
= and

Akzlkm(max) E ko] ~ Ikm(min) = ko] 1.24b

The accuracy requirement. can be approximated by the condition

2 2
k® + k
= S r -k r (I m =m(max) or m(min) 1.25a
m
2ko 2

Elementary manipulation with (1.24) yields
2
o ('nko/(Ak) 1.256

or, with the help of c%coﬁ*cg,

e WL K

¢

facaca

1 l;;‘l'-_.l ,

r & wel/wise') ?]. 1.25¢

Equation (1.25) is somewhat less restrictive than Fitzgerald's

L3 B
[y

result, but serves as a reasonable guideline. Note the explicit
frequency dependence in (1.25c): For a given family of excited
modes, the maximum permissible range for given accuracy will
decrease with increasing frequency.

D. Improving the Accuracy of the Parabolic Equation

(1) The "Pseudoproblem"

In the light. of the phase-coherence difficulties
discussed above, Brock et al. (1977) investigated the feasibility
of modifying the problem to reduce these effects. They were

guided by ray-tracing predictions of the turning points of the
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rays and the requirement of matching the normal node and parabolic
rhase speeds, at least over the narrow hand of Y,'s required for
the validity of the parabolic equation (1.11). Based on these
considerations, they determined that an approximate analogous
"pseudoproblem” could be formulated for which the index of
refraction and the depth at which a particular srced oFf sound was

found were adjusted according to the mapping

(n,z)+(n*,z*) 1.26a
where

n*z{(2n - 1)% 1.26b

z* n;’z 1l.26¢

Utilizing this technique, they determined that sensitivity to the
choice of ¢, was considerably reduced, and the nvedictions of

the transmission loss given by the "pseudoproblem" matched those
predicted bv the normal mode solution of the original problei nwuch
better than the solution of the parabolic equation without the
mapping of (n,z).

While these results were obtained for the range-
independent case, the authors make the plausible assertion that if
in a range-dependent rroblem the mapping is to be done at each new
range step, then the improvement of results over those without the
mapping should be atout *he same as for the range-independent
case.

(2) Alternative Eauations

It should be pointed out that (1.11) is not the only form

that a parabolic approximation to the wave equation can take.
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Indeed, several investigators have made rather extensive studies

of alternative forms and more accurate approximations. We shall

-
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confine our discussion but provide references for the reader

n,:
L]

interested in pursuing these extensions further.
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McDaniel (1975-2) studied sc~veral methods of separating

solutions to an asymptotic wave equation into outgoing and

-4
-
]
o
«
v e

incoming components. DNepending on t''e ethod, when any

back-reflected (incoming) component is neglected, modified

Y § S VANV AFEPREY T SRR S .

parbolic equations result which, when comparcd to the asyiptotic

kY

wave equation, reveal errors of various orders. Of the three

cases studied, two led to second-order ~rrors and one led to

e e MR B

fourth- order errors. The commonly-encountered parabolic equation
(1.11) was one of the second-order cases. In addition, numerical
analyses using different algorithms were performed and results
were checked for internal consistency by exchanging source and
receiver positions and verifying that acoustic reciprocity held to

reasonable accuracy.

Ll s D

Palmer (1976) investigated improvements to the !'ikonal

S
-'-

equation and approximations to normal-mode theory by assuming that

the Fikonal eguation can be applied in the horizontal plare. This

leads to expressions for the normal mode coefficients and the

TRTKTE

i develorment of an appropriate Green's functi~n. After ratler

elaborate mathematical development, some modified parabolic

A
]
i
a
)

equations can be extracted. The t'rust of tlre discussion,

a2a8 .00,

however, is toward a further understanding of the plausibility of

=L U

the physical restrictions necessary to justifv the validitv of

discarding small-order terms in the Helmholtz equation to obtain

Sl TR S Sl DA O VD 4
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a parabolic equation.

An investigation by DeSanto (1977) into the mathematical
relationship between the solution to the Helinholtz equation, S,
and the solution f£f to the parabolic equation (1.11) yielded a
collection of correction terms. DeSanto's approach was to assume

that S and £ could be related by an integral,
0

S(r,z) = A gg(y,z) R(y,r,z) exp[B(y,r)]dy 127
4}

where A, is constant, R and B are unknown functions, and y is
the dummy variable of integration. (The above integral is for
cylindrical coordinates, a special case of the more general

" formulation accomplished by DeSanto.) If this is substituted into

the Helmholtz equation and k(r,z) written in the form

» k 1.28

k(r,z) = kl(z) + kz(r,z) where kl 2

then it is possible to obtain B and the functional dependence of f
on y by requiring self-consistency. What. remains is a
differential equation for R. DeSanto then shows that the solution
£ to the parabolic equation (1l.1l1) results from the stationary-
phase approximation of the integral (1.27). Retaining higher
accuracy in evaluating the integral provides correction terms to
the parabolic equation and therefore to £. In a later paper,
DeSanto, Perkins, and Baer (1978) begin with a "corrected

parabolic approximation” [compare with (1.12a)l
s =VZ7(mk ) exp[i(k r-m/4) g+ (ir/2K) 2/8rh)] 1.29
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derived in the earlier paper, and note that this can be adopted
very easily into the algorithms solving for f. The procedure is
to step out. the solutions to f two range increments from r and
then use the numerical approximation for the second derivative

with respect. to r evaluated at r + A4 r,

where the subscript "c" designates the corrected value. Their
comparisons between solutions obtained from normal modes, the
parabolic approximation, and the "corrected" parabolic

approximat.ion suggest. that the errors introduced by the parabolic

about. twice the computer time and three times the memory compared

to the uncorrected parabolic approximation.

13
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azg f(r+2ar,z) - 2f(r+ar,z) + f(r,z)
. 3 > ~ 3 g f'"(r+sr,z)
r r +Ar,z (Ar)

1.30
and the value of f predicted at the first of the two range
increments 1s corrected by

fc(r+Ar,z) = f(r+ar,z) + (iar/zk)f"(r+ar,z) - i3

approximat.ion are roughly halved. However, this approach requires

.
]




- P . Bl nac” annt Bt R T T Ty L ANt Sl et . Sl S e A = - —
l\*'. oo el A o e O DR D i an e i bk b e e R i S L e U T Ry O T N e e o
P

;

P

BE Uiy S e A A 4 SO ARt i

-
]

N
;
h
e
M
j
:
‘
¥
.
N
h
|
¢
f
|
I
!

'''''''' o

-._- L.""“

atas

I1I1. Boundary Conditions for the Parabolic Equation

Except for special cases, the parabolic equation, like the

Helmholtz equation, does not yield analytical solutions for space-

e [

dependent speed of sound profiles or irregular boundaries.

Addad

Instead, numerical 1ethods must be adopted. Ther= are # nunber of

". "-_L’[ ERS

numerical techniques now available for use with the parabolic wave
equation. We shall mention some of those t''at are currently &3
popular. ol
: : : »
The major driving forces developing computer algonrithms for
numerical solutions are that computers are limited in available
memory and computer *time is expensive. As a result, emphasis has

been placed on fast-running programs which require relatively

it

little memorv. Since the rarabolic equ-t‘on is designed to be

stepped out in range, it is important to use techniques which

allow the largest possible increments in both depth and range.
Since each step requires numerical mathematical manipulation of
inbut data and the resﬁlts of the previous range step, efficient.
computationalAschemes are required. In this report we say little
about these aspects of the problem; our purpose is to describhe the
methods rather than discuss the details of their advantages or
disadvantages as far as computer implementation is concerned.
Before turning to the models, it is necessary to discuss two
aspects of the parabolic equation which are comrion to all methods
of solution. In every case, it is necessary to begin the
computation with an input data set of the values of f at some

initial range as a function of depth. This is the initialization

14
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problem. The second aspect is that of treating the boundaries of

the water column and bottom. There is little difficulty with the

PRIy T Y TR S e

surface, which is represented by a pressure release boundary so
that. at zero depth £(r,0) = 0 for all r. However, the bottom, if
an important aspect of resultant acoustic field, presents some

difficulties.

A. The Initialization Problem

Whatever set of values for f(r,,z) at the initial range

r, are chosen, they must be consistent with the acoustic source
generating the pressure field. It is therefore useful to obtain a
few results for an omnidirectional point. source located at (0,2Z)
in an ocean whose properties vary only with z. This "boundary
condition" can be built into the acoustic wave equation by
including a "source term".

If the omnidirect.ional source has unit. pressure amplitude at

a distance of 1 m, then the appropriate inhomogeneous wave

equation in cylindrical coordinates is

[Vz + kz(z)] 5 = -28(r) 8(z-2)/r 2.1

The presence of the term on the RHS guarantees that
e
lim 5 = [r2e(2-2)2)"" explixvkb2+(z-2)2 ]
(r,z)+(0,2)

Jesg-82e_ s eze

P

Given that. conditiions exist for the trapping of sound
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in a channel, it is plausible to perform the separation of

variables

s = R.(x) 2 (2) 2.8
m

it

and assume that the Z_  satisfy

2 2 2 512 2 _
d Zm/dz + [wW/c“(z) - km]Zm = 0 2.4

the appropriate boundary conditions,and are normalized. Then,
the Z, form an orthonormal set. of eigenfunctions. Substitution

of these results into (2.1) yields ]

Z;. {dzgm/dr2+r-1(d3m/dr)+k;§%}Zm = -28(r) 5(z-2)/r

If both sides of this equation are multiplied by Zn(z),

integrated over z, and use made of the orthonormality condition

-Jim z dz = $ = 2.6
then the result is

2

a?rR sar? + v~ I(dR 7dr) + k%R = -28¢()Z_(2) /v 2]
-—m -—m m—m m

which is solved by

(1)

Ry = imz (Z) H_ "~ (k 1) 2.3

Now, if (2.7) is substituted back into (2.5), we obtain the

useful relationship

2. 7.(2) 7 (z) = §(z-2) 2.9
m m m
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This expression ignores the collection of continuous

.

14

eigenfunctions, since these, practically speaking, contribute
nothing to the acoustic field at. ranges of interest.

(1) The Gaussian Field.

When an omnidirectional source of sound is reasonably

distant from either the ocean surface or any bottom, then the

P BRI ALFTRATEEINL SV

source may be approximated by a Gaussian pressure field for the
initial set of pressure as a function of depth. The difficulty is

to determine the parameters of the Gaussian distribution to

K "mat.ch" the point. source to the particular propagation problem

under considerat.ion.

! In the immediate vicinity of an omnidirectional source !
:5 which is not too close to any reflective boundary, the amplitude ;
: of the pressure must. decrease with distance from the source,

I according to spherical spreading. For such a source located at

(r,z) = (0,2) therefore, from (1.2) the amplitude of the radiated
pressure must. be given by

P = [r’+(z-2)2]7™ 2.10

(Recall we are in cylindrical coordinates with radial symmetry and
have assumed unit pressure amplitude at a distance of 1 m. This
amplitude choice facilitat.es conversion between source level SL

and pressure amplitude for sources of arbitrary strength.)

- IR AL S s e €6 O WER LTSN

. In the case of an infinite, homogeneous medium the source
with amplitude given by (2.10) and angular frequency & must be
described by an appropriate collection of delta functions at. (0,%

However, all the energy radiated from the source does not find its

oW S W W W

way into the sound field trapped by the sound-speed profile.
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Instead, energy can be lost through interaction with the bottom.
Thus, rays whose angles of elevation or depression exceed certain
limits will be lost to the channel at large ranges, and the source
appears as if it. is not a point source, but. instead possesses
vertical directivity.

Brock (1978) presents one way of incorporating this
apparent. directivity into the parabolic equation initialization:

Assume that in the volume of water surrounding the source
at. (0,2) acoustic conditions are relatively uniform. Then we can

treat k as constant. for z~Z and r~0. If we then take

k = ko = w/c(2) okl B

where c(zZ) is the speed of sound near the source, the parabolic

equat.ion (l.11) simplifies to

3°£/92° + 2iko<6£/a1> =0 2.12

Within the volume for which (2.11) is a reasonable approximation,
but. still under the condition kyr >> 1, we require that the
amplitude of the solution to (2.12) be consistent with the
amplitude P' given by (2.10). We can then extrapolate f back to

r = 0 and obtain an extrapolated equivalent boundary condition
along the z-axis. (Physically, this seemingly-artificial approach
is equivalent to taking the far-field behavior of a directional
source and extrapolating it back to the position of the source,

thereby ignoring near-field effects.)
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This extrapolation is accomplished by reversing the steps

of the argument.. Postulate that the equivalent boundary condition

for £ at (0,z) is given by the Gaussian distribution

S
ot

“ £(0,2) = F expl— (z-2)%/c?] 2.13
b where F and ¢ are to be determined. With this as an initial

o condition (and requiring that f vanish at large r), according to

i Brock the solution of (2.12) can be verified to be

::: ; 2 ) 3

:% f(r,z) = [ng(r)]expl-(z—Z) /[fzg(r)]k 2.14a
i

R i 2

i g(r) =1 +t2r/(k %) 2.14b

Now, substitute (2.14) into (1.12) and, since we have two

arbitrary constants, set A =(T'ko/2)1/2 for convenience.

Next., take P = 'gl,

P = [;(r,z)‘/\/? 2.15

v .
LERERL 2N

W GV oV o
LRSS

= =
g
< K,

Brock's result. 1is

— ( \ 2.16a
e (Fz/r)(h/‘/l+h2) exp:-2h2(z-2)2/[ 2 (1+h ) 1
with

_1 2 .
h = 5 koa' /r 2.160

LIRSS LSS

0

The next step is to expand (P')2 and P2 in power series. For

(P')2, assume that [(z - Z)/r]2 is small. For P2, assume

PSRN

asaA
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that. the exponent in (2.9a) is small. This leads to two power
series in [(z - 2)/r]2, and equating coefficients of the leading

two terms yields the results

o—=ﬁ/ko 2.1l7a

V7x /o = (x_ 2.1

Thus, the initial values of f are given by

F

£ (0,2) = ./Tc—;exp[-kg(z-Z)z/Q] T
for an omnidirect.ional source with unit pressure amplitude at 1 mn.
Direct substitution of (2.17a) into the exponent of
(2.16a) reveals that the exponent is small if [(z - 2)/r]2 is
small. Thus, the physical implication of the approximations
leading to (2.18) from (2.16) is that the omnidirectional source
iz approximated by an equivalent. directional source whose acoustic
axis lies in the horizontal plane and whose beamwidtl. satisfies
the requirement of relatively small angles of elevation and
depression. It must be noticed that the Gaussian-field approach
may run into difficulties if the source is too close to the water
sur face or the water-bottom interface. In either of these
situations, the Gaussian field may intercept the boundary before
it has become negligibly small. As a rough criterion, the source

should be removed by several ¢ from any boundary.
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(2) Normal Modes

While the Gaussian field initialization has the advantage
of beginning with a field which varies rather smoothly with depth
and, if fairly narrow in width, appears to be a reasonable
approximation to a point. source (at. least to the eye), it is not

universally accepted as being without. inherent. error. See, for

example, Wood and Papadakis (1980). An approach based on normal
modes can be conceptualized as follows:

For ranges near the source, outward propagation can be

described by assuming that. the speed of sound profile and bottoin

properties are uniform throughout. the medium (this includes the
depth). The Helmholtz equation (2.4) can be solved numerically to
obtain the depth-dependent. eigenfunctions Zm(z). Since the Zj
form an orthonormal set., they can be used to represent a point

source. Then, for a point. source at. (0,Z) of unit pressure

-'.J:l.L.'A!L ‘._...‘.;'-,'_l-_zla‘.'-'-'.

1
ot gl

amplitude at r = 1 m, we have from (2.9) and (2.8)

Edl e

. ‘ (1
S(r,z) = J.TT;HC() )(kmr) Zm(Z) Zm(z) 2.19

(1.6) allows us to form an initial expression for £(0,z),

ORI .4

£(0,2z) = iTrZ 202 T 2D 2.20
= m m m

Because of the small angular-aperture assumption implicit in the

) e .
XS 4

parabolic¢ equation, and also because in most situations of

21

)
practical intierest only modes corresponding to rays with small
angles of elevation and depression with respect to the horizontal
are trapped, the summation over m can be restricted just to that ﬂ
subset. of Z, satisfying these conditions. Notice that since A
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only this subset is to be retained, the Helmholtz equation must. be
solved only to obtain this subset which results in a substantial
saving in computer running time.

Given the initial expression (2.20), the discrete depth
values z, are specified, the associated g(O,zm) found, and the
solutions for increasing ranges stepped out. If practical aspects
of the problem preclude starting at. r = 0, the normal modes will
have to be allowed to propagate out to the minimuw range r, at
which the parabolic equation can be implemented. 1In such a case,
errors introduced as a result of approximations necessitated in
ufilizihg the normal mode problem must be studied carefully. For
exémple, the bottom may have to be'unrealistically smoothed out to
s R

For an example utilizing a normal-mode starter (and
displaying some of the difficulties encountered), see Guthrie and
Gordon (1977).

(3) Ray Tracing

Another approach to obtaining an initial set of values
for £ at some finite range r, from the source involves phase-
coherent. ray tracing. From a practiical point of view, this has
appeal, since interactions of any ray with the bottom can be dealt
with by introducing the appropriate plane-wave reflection
coefficient. as long as the source is several wavelengths away from
the bottom. The required family of rays is traced out to the
desired initial range, with all phase information retained
(including that. arising from surface and bottom reflections), and

then combined to give the resultant. pressure distribution at
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E: (rgsz). From this, £(rg,,z) can be obtained and the f's for
B larger ranges found by stepping out with whatever algorithm is

E! used to solve the paraholic equation. For an example, see Guthrie

a
.

and Gordon (1977).
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B. Treatment of the Bottom

Adequate representation of the hottom uins been a difficulty
with the parabolic wave equation. The seriousness of the problem
and how it is dealt with depends on he algorithm used in stepring
the solution out in range.

We can say that many of the arproachres fall into three
categories:

(a) Reflection of the rquivalent rays from the bottom allows
the reflective loss to be given as a function of the apparent
angle of incidence of the ray on the 1ot .om. This can b2 either
specified as input, or calculated according to some formula. The
possibhility of the bottom depth '=2ing & function of rance is
included. (If attention is restricted to sufficiently large
range, of course, all rays less grazing than critical can be
neglected since these correspond to bottom bounce paths with
appreciable transmission into the bottom at each intervrception.)
However, the determination of what particular rays are striking
the bottom 2t each specified range is a nontrivial process, and
the models and techniques used in this determination often contain
rather sweeping approximations and may imrose aquestionable
requirements on the depth dependence of the speed of sound and the
absorption coefficient in the bottom. An example of this appronch
can be found in the report by Stieglitz et al. (1979).

(r) The speed of sound and t'e abhsorpticn coefficient can be
specified as functions of depth by a complex index of refraction
for the bottom, and this information Duilt into the algoritlua.

Depending on the computational scheme, it may be necessary to
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prohibit any discontinuity in c(z) at the water-bottom interface
by allowing c(z) to change rapidly but smoothly over some small
interval in depth about. the interface, and to have the bottom
absorpt.ion coefficient. rise with depth from zero at the interface
to finite value at larger depths. In this method it may be
necessary to introduce an artificial pressure-release boundary at
some appreciable depth in the bottom. This step is not
particularly troublesome, if done correctly: For an absorbing or
non-absorbing bottom, the acoustic field will eventually begin to
decay quasi-exponentially so that. the energy found at all but
shallow depths in the bottom becomes quite small; if this is
allowed to be reflected back up through the bottom and into the
water, the error introduced into the resultant acoustic field is
negligible if the reflect.ing surface is deep enough. See, for
example, Williams (1975) and the references he cites.

(c¢) If the algorithm permits, the water-bottom interface can
be built into the comput.er code directly in terms of the boundary
condit.ions of cont.inuity of pressure and continuity of the normal
component. of the particle velocity. Let the water be labeled
fluid 1 and the bottom fluid 2, and assume a flat bottom at. depth
zZ = Zg. Then (for a flat horizontal bottom) the boundary

conditions on f become

£(23) = £,(zp) Z.21
and
“Lds 192) =0."L(d£./92)
(y “(°f,/92); =0, "(0f,/0z), 2.22a

B B
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Notice that if the bottom is not flat, so that zg is itself a
function of range, (2.21) remains the same but the continuity of

normal particle velocity takes the more general form
ﬂl R VE), = p3 Bl VE, 2.22b
B

where N is the unit normal to the bottom at coordinate (r,ZB).
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I1II. Methods of Solution

There are, of course many different ways in which solutions
to the parabolic equation (1.11) can be attempted. As with the
Helmholtz equation, closed-form or analytical solutions are
available only for certain special cases. As a consequence,
solutions are accomplished numerically with algorithms resulting
in efficient computer use. As might be expected, the more
complicated the case, the more difficult the solution. Certain
methods of solution are useful and of sufficient accuracy only

when the bottom is not important. to the problem, as in the long-

R e e e

range propagation in the deep sound channel when the bottom of the

channel lies well above the ocean floor, or when the bottom is

sufficiently well-matched that it can be treated by fairly simple

approximations. More recent methods have been developed which
allow more realistic inclusion of a bottom. Our approach here
will be to outline a few of the methods in roughly chronological
order of appearance, but. leaving detailed discussion and the
consideration of fine points and subtleties for the interested
reader to discover from the references.

Before discussing the methods, we shall develope a single
formalism to unify the ‘discussion. Rearrange (1.11) to isolate

the derivative with respect. to range,

of/dr = .r':i(kz-kz)/k + (%i/k )<32/az%jf 31
& o (o} o ==
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Following the fundamental lemma of calculus

S

f . 1lim f(r+ar,z) - f(r,z) 3.2
Jr  ArPo AT

we can turn this into an equation involving the increment ar in

range, which provides the basis for the numerical incrementation

B GRARIP UARTE  HUELFH

of range,

e .
ol

i f(r+ar,2z) = Ll+(ar)*:iko(n2-l) + (ar) (%i/k (521522 £(r,2) 3.3
8
i If we define the operators
» o pal 1o P f 2
a a = ki(k -ko)/kO = 51ko(n -1) 3.4a
b = i/(2k) b s
p? = 92/52°% 3.4c

then (3.3) assumes the form

f(r+ar,z) = Ll+(Ar)§+(Ar)gD2]£(r,z) 3.5

I B C L O ent,

The operator a describes the refractive properties of the medium
(and may include those of the bottom). It is thus a function of

range, depth, and the constant k,. The product. of operators

DAMLAUA S0 DU STATRURIALS  IPERLRIAEAVEVE RSy

gpz describes the depth dependence of f.

If we make use of the expansion of an exponential,

exp(x) =1 + x + 0(x2) 3.6

BASIRIRE * § LMY
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then it is clear that we can write (3.5) symbolically in the form

2
+
f(r+ar,z) = e‘m(E 2D )ﬁ(r,z) 3 a7
if |arfa + 9D2]£[<<}£|. The reason for this representation is

that. it will allow manipulation of the operators to be brief and

simplified. For example, note that the manipulation

is ident.ical with
1 +A+B=(1+A)(1 + B)

through terms of first order in A and B. The difference between
the two sides of the above equation is 2AB, which is of second
order. As can be seen, for small Ar the operators a and gpz
acting on f produce terms which are substantially smaller then f
itself, so this symbolic formalism is useful.

A. the Split-step Fourier Transform

This approach makes use of the Fourier transform and its
inverse to eliminate the second partial with respect to z. There
are two forms in which this can be done; we first consider the
form which appears to be used most widely.

Let. us define the symmetric complex Fourier transform pair

L -]
il isz
F( )= — ( ) e dz 3.8a
=
£nil © i,
B S ¢ 9 e 2y 3.8b
Y N 27
- o0
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where ( ) represents any reasonably well-behaved function of s in
the transform (3.8a) and any reasonably well-behaved function of z
l in the inverse transform (3.8b). (For the required mathematical f
properties defining "reasonably well-behaved", consult any
standard text on transform theory.)
l Let. us apply the transform pair to the RHS of (3.7) after

utilizing the approximat.ion

2 2
e@r(a +bd%) (ar)a _(4r)bD 3.9

Now,

ArbD2 1 o Ar bD2 isz
F e = f) = e — g - dz 3.10
s I Virta
- 0

. AR 808 A0S B.S G e 470

TR TR TR e

and 5
isz isz

2
e fe ~ (1 +Ar_lg-:—-2) fe
z

Sz

.o mn .

~ (1 -arbs?) £ et

isz

2
@ Aras fe Sl 1L

?

2 |
Because the integration in (3.10) is over z, exp(-4rbs”) can be

factored out,

B rexp(Arl_a_Dz)g]zexp( -Ar‘_lzsz)_}:s(f)

: _SL 3.12
i
and the inverse transform (3.8b) applied,
: ex (Arsz)fNF-l{ex (-Ar'bsz)F (f)]
prare® J1%1s P == ‘ig'= 3.13
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! It then follows at once from (3.9) that !
2 2 7 :
-1T (-
e[Ar(§+ED )lsexp(ﬁré)gs o ‘T4nbs )Es(ﬁ)‘ |
& - 3.14 :
i
3 and insertion of this into (3.7) yields the split-step Fourier :
D
transform result d
:
- -1 2 :
f(r+lr,z) = exp(ara)F_~[exp(-Lrbs YE_(£)] 3,15 P

where a and b are given by (3.4a) and (3.4b). Notice that they

yield purely multiplicative factors. Examination of (3.15)

LR

reveals that the algorithm can be viewed as dealing with

diffractive effects by the exponent multiplying Fg and

refractive effects separately by the exponent multiplying the

Y - W 3

inverse transform.

Detailed investigation of the errors introduced by use of the

Al

exponent.ial approximations is involved and results in rather

difficult expressions to interpret. However, Jensen and Krol

R &1

(1975) have investigated the results for situations typically
encountered in the ocean and obtained relatively simple criteria: 1
For cases of practical interest, the errors introduced in 4

predicting the behavior of f over the range increment. Ar are K

bounded by the larger of

2
g e .

3.16
IZ(w/co) (¢n/cz)ar (éf/éz)[ 2

[ROBN . 3 WIS
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or

{[Ud/co)(an/az)Aq]zf{ 3.16b

These reveal that if f is not sufficiently slow in its depth
variation, then the error increases linearly with frequency and
linearly with the range increment.. For sufficiently slowly
varying £, however, the error depends quadratically on both these
quant.ities.

When (3.15) is implemented on a computer, the Fourier
transform is replaced by its numerical counterpart, the FFT. This
results in a fast-running algorithm which deals with a finite
number of terms. The FFT requires a finite depth over which it is
applied, so an artificial bottom (pressure release) must. be
inserted at. some distance below the water~bottom interface. Given
this interval in z, the depth increment can be selected for

application of the FFT. It must be noted, however, that running

‘time increases fairly dramatically as the number of depth
increments N is increased. Guthrie and Gordon (1977) estimate
that. the time will increase approximately as log (NN). This can

place rather drastic restrictions on the variation of the index of

i T e e Rt

refraction n(r,z) with depth, since the number of points in depth

must. be great enough to reproduce with fairly high accuracy the

SR Eo

details of the speed of sound gradients.

<

An additional problem with the split-step Fourier transform
approach is that the change in density between water and the

bot.tom cannot be considered. While the reflection coefficient at

LA TR Y AL

AN )
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at the water-bottom interface is considerably more sensitive to

changes in the speed of sound than to changes in the density, if

T PP I N Y e Y |

the change in the latter is too great, realistic predictions
cannot. be expected from the algorithm. Attempts to surmount. this
difficulty by using equivalent. rays and specifying the reflective
loss (and phase angle) at the interface have had mixed success.
Indeed, pessimism has been expressed as to the utility of this
algorithm in situations for which the bottom is an important.
element. of the propagation problem; see, for example, Jensen and
Krol (1975) and Brock (1978). Further, inclusion of a bottom
increases running time considerably. Jensen and Krol (1975) have
compared computer times for split-step parabolic, normal mode, and
ray programs for deep water (for which the bottom is not
important) and shallow water for which the bottom is important.
There is considerable variation in running times, but. in
particular for their case the shallow water problem led to
extremely long running times for the split.-step approach.

The second form of the split-step Fourier transform approach
has been described by McDaniel (1975). This is based on an
alternative formulation of the RHS of (3.7) presented by Tappert

and Hardin (1974),

exp[Ar(g+§D2ﬁE=exp(Arg/2)exp(ArQDz)exp(APQ/Z)

Application and manipulation of the Fourier transform, its

inverse, and the exponential terms proceeds much as before, and
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the details are uninteresting. The result is

S o a
f(r+Ar,z)zeAr§/2§slle Argéfs\eApiﬁziw! o L7

Comparison of this result with the analogous (3.15) reveals that
the index of refraction has been treated a little more carefully.
When (3.17) is analyzed for the dependence of errors on the range
increment., it. appears that the error depends on (2r)3 which is

an improvement. over the errors resulting from the approximations
leading to (3.15). What restrictions must be placed on 4z,
however, by the introduction of n(r,z) into the Fourier transform

over z do not seem to have been isolated.
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B. Alternatives to the Spiit—-step Method

Within the last few years, there have been a number of
alternative approaches to developing efficient algorithms for

solving the parabolic equation (1l.11). We will mention three

. closely related articles which provide a rather interesting line

Lil of evolution. All of these discard the split-step technique with
: its associated use of the FFT direct and inverse numerical method.

Instead, the second derivative with respect to depth is calculated

- numerically from the depth increments by the use of a central

~ finite-difference approximation. Since the approaches based on

this technique require more detailed specification of the

coordinates of any spatial point on the range and depth mesh, we

& will ‘adopt a convenient formalism which, although somewhat.

unconvent.ial, is easily followed and succinct. Since the depth

G below the ocean surface can be written as z, = m 4z where Sz is

o the chosen depth increment, and the range can be written as r, =

n Ar, let us define the shorthand
f(rn,zm) = f(nar,msz) = fln,m] 3.18

(Note that n need not begin with n = 0. If the parabolic equation

s is initialized at some finite range, then the appropriate finite
o

Q‘ value of the initial n can be used.) The underbar on the RHS has
w been suppressed for notational convenience. It is to be

understood that f[n,m] is complex.

e g X
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Now, it. is straightforward to see that. the second depth

derivative can be estimated numerically by the formula

32
Az

fln,m+1] - 2f[n,m] + fl(n,m-11] 3.19
(az)°

£ 2
v i

D

h

By use of (3.19), Lee and Papadakis (1980) cast (1.1l1) into

the form

dfln,m]/dr = aln,n]fln,m] + [2/(:2)2]{f[n,m+1] - 2fln,m] + fln,m-11]-

3.20
where the operators a and b have been defined previously, (3.4).
(It. is worth recalling, for this discussion and what. follows, that.
b is simply a constant. and that a depends functionally on depth
and may also depend on range through the square of the index of
refraction.) This equation reveals that the first. range
derivative of f at some point [n,m] depends on the values of f at
the adjacent. mesh point.s characterized by [n,m+1], [n,m], [n,m-1].

Thus, (3.20) provides a set. of first—order ordinary differential

equations, each of which is coupled to its immediate neighbors in

depth. While this may appear to require a considerable amount of

TETETETEY
Tate s

¢ €0 8 .
AL aniantg L

storage when these matrices are programmed into the computer, the
fact. that the coupling involves only adjacent. depth values
collapses the matrix representing the RHS of (3.20) to a
"tridiagonal"” form for which all elements are zero except those
whose depth indices are m, m + 1. The depth incrementation is
halted at. the bot£0m, and Lee and Papadakis let the element. f[n,M+1] . i
{

represent. the value of f at the bot.tom.
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Note that M may itself be a function of n, so that a sloping or
irregular ocean-bottom interface is allowed. The range-depth mesh

does not project into the bottom. In this sense this approach is

ROR1 3 B
O ) TR AR |

RRAALINE — S MRS R AR

incomplete, but the authors avoid this difficulty to some extent.

by invoking a boundary condition
Vp-h+ ¥(s)p =0 8. 20

A : _—
where n 1s the local normal to the interface and s specifies the

line of the interface in (r,z) space. It can be quickly seen for

b
*;
i
|
B
’

monofrequency sound that this is equivalent to the condition

-iwl-n + «(s)p = 0 3.22a

AOAE ¢ & ACPRE PR AALS4a0 — ¥ SARLISOMEIEAIR 3

ORI

which can be rearranged to yield the form

RAM
OO

>
4

p/(d-A) = ie/o(s) 3.22p

Thus, iw/« represents the ratio of the pressure » to the

- -

~~r
. (10 . .'.'.'n 'l
talalats o ool -

2 =
i component. of the particle velocity Ehlocally normal to the bottom. |
" For the case of a flat horizontal bottom, (3.21) takes the form .
12 4
[ ~
v s .1
v dp/dz + A(r)p = 0 at the bottom 3.23 2
3] 3
123
[
! "
" :
- Equation (3.23) can be solved by p = exp(-x«az), and the T |
. %
Y numerical equivalent for specifying the interface value f[n,M+l1) N
L ]
E . is %
E f(n,M+1] = f[n,M]exp{ -g[n]Az} 3.24a
:
K D
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At. the ocean surface, of course, the pressure rust vanish and the

surface boundary condition is

B

Ly
.l ¢

A o 4
alel oLt ol

flin, 0% = O 3.24b

T e e v ¥
. .

The authors solve two cases: a perfectly-rigid, flat, horizontal

a4

bottom and a perfectly-rigid, flat, sloping bottom. For both, Z = O.

Results are compared respectively with a normal mode solution

G Ce bR ot Sl
LU .

T

(horizont.al bottom) and a method of images solution (sloping
bottom), and are found to be in very good agreement.

In a later paper, Lee, Botseas, and Papadakis (1981)
reinvestigated the solution of (3.20), this time using an implicit
finite difference method rather than the linear and nonlinear
multistep methods used in the Lee and Papadakis (1980) article.
The practical advantage of the implicit. finite-difference
technique is that (at the present time) while it is, according to
the authors, about equally as fast as solving (3.20) by the
multistep methods, it requires significently less memory. Several
propagation examples are worked out, using range independent,
upslope, and downslope cases. The bottoms were fast and
absorptive with densities up to 50% greater than found in the
water column. Results were compared with a normal mode program
(SNAP) and a split-step parabolic equation (PAREQ), both from
SACLANT. Propagation loss curves for all three programs are shown
for the various cases, but detailed comparisons and discussions
were not attempted. Again, the boundary conditions were handled

according to use of (3.24a) for the horizontal
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bot.tom, that equation's generalization for the range dependent
bottoms, and the surface was represented by (3.24b). The authors
&lso point. out. the time-saving advantage of not having to run the
parabolic solution into the bottom.

McDaniel and Lee (1982) attacked the boundary condition at.
the bottom more directly. If the bottom is found at. depth .z,
assumed to be flat and horizontal, and to have properties
independent. of range, then application of continuity of pressure
and the normal component. of particle velocity across the interface

yields

fl[n,mb] = fz[n,mb] 3.25a

P;lafl[n,mb]/dz s P;lafz[n,mb]/éz 3.25b

where the subscripts 1 and 2 refer to the water column and ocean
bottom respectively. After performing some Taylor series
expansions for the second derivative of f with depth in both media
and making use of the boundary conditions, the authors are able to

write a parabolic equation which must be satisfied at the

interface, P
. 7 3 1 i’
Bf[n,mb]_/l+ —l\'=/a [n ] +-f—a [n ] ;u[nm] 3.26
e F2/ (1 m, P2 2 m, % b
2b I [ 1] (/1 iy [n,m_ ] + ul 1) -
+ —_— uin,m+ - + — i ujln, + uin,m -
(a2) 2 f2 b " f2 "o b
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Away from the interface, of course, (3.20) 1ust hold in both
media. Thus, (3.26) is solved for i = iy but (3.20) is solved

for all other m. With the bottom included in the problem, throughn
application of the boundary conditions (3.25), it ie necessary to
allow the depth z to penetrate at least one increment Az below the
interface. With the single exception of (3.26) for 11 = 1y,, the
problem is run according to any of the above-mmentioned methods; if
the split-step FFT method is used, however, it must be assumed
that there is no density change from water into bottom. An
example is worked out: a two gradient concave speed of sound
profile overlies an isospeed fast bottom with density slightly
more than twice that of the water. The problem is sclved using a
normal mode program, the split-step FFT method, and implicit
finite-difference methods with and without the interface condition
(3.26). For the parabolice equation solutions, a Caussian-field
initialization was used. As seen in Fig. 3 of the article, the
agreement between normal mode and the implicit finite difference

with (3.26) rnethods is strikingly good.
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IV, Comment.s

While the parabolic equation approximation introduces an
unavoidable phase-speed error, the effects of this error can be
mitigated either by solving the pseudoproblem according to the
mapping (n,z)+(n*,z*) developed by Brock et al. (1977), or by the
modified equation (1.29) obtained by DeSanto, Perkins, and Baer
(1978).

Concerning the split-step FFT algorithm, the depth increment
must. be chosen small enough that abrupt changes in the speed of
sound profile do not introduce significant errors. This is not
too serious in the water column, but the number of increments can
become prohibitive in terms of computational time if there is a
sharp change in the speed of sound between the water column and
the bottom. Further, this approach cannot. deal with the change of
density between water and bottom. The various approaches
attempting to accommodate the density éhange do not appear to be

very satisfactory, particularly when the bottom is an i.aportant

part of the propagation problem.

The use of central-difference methods for treating the second

LAY B
3
LA bs

partial of f with depth has opened up an avenue of approach which

allows a much more realistic, and physically satisfying, treatment

o BE

of a fluid bottom. Further extension along these lines is to be

R T Y
Tl T

anticipated.

- The parabolic equation method is based on monofrequency,
cont.inuous wave signals. This means that the multipath problems
encount.ered with transient signals are not considered, and to date

it has not been possible to isolate time-separated contributions
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at the receiver via the parabolic equation. While in principle
Fourier synthesis over the required band of frequencies is
possible, implementation at this time would appear to be extremely
prohibitive.

The assumption of cylindrical symmetry is important and
restrictive whenever an irregular bottom is a significant feature
of ghe case of interest. For example, if propagation over a
sea-mount is considered, the assumption of cylindrical symmetry
converts the mount into a "ring" whose center of symmetry is the z

axis. This results in the neglect of any azimuthal reflection or

. scattering of the incident sound field from the sides of the

mount, and can seriously affect comparisons between the

cylinarically symmetric parabolic equation nredictions and

experimental results.
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